📢 1º e 2º semestre de 2023

O QUE ESTAMOS BEBENDO? ANÁLISE DA PRESENÇA DE MICROPLÁSTICOS

GIGLIOTTI, Loemi Fiori HELENE Lívia Portes Innocenti Helene* FERREIRA, Anderson Targino da Silva loemi.gigliotti@fatec.sp.gov.br livia.helene@fatec.sp.gov.br anderson.ferreira46@fatec.sp.gov.br Fatec-Jahu Fatec-Jahu Fatec-Jahu

1. INTRODUÇÃO

O texto aborda a história dos polímeros sintéticos e sua evolução, destacando o problema atual da poluição por plásticos, especialmente microplásticos na água. Essa poluição representa um desafio ambiental significativo, com impactos na saúde humana e nos ecossistemas aquáticos. O projeto em questão concentrou-se em estudar e analisar a presença de microplásticos na água, visando conscientizar sobre o problema e desenvolver estratégias de mitigação.

2. METODOLOGIA

O município de Jaú, em São Paulo, Brasil, foi escolhido para o estudo devido à sua importância regional e infraestrutura adequada. Com uma área de cerca de 687,103 km² e uma população de aproximadamente 153 mil habitantes, sua geografia é caracterizada por um relevo suavemente ondulado. As amostras de água foram coletadas mensalmente em dois locais distintos: pontos de captação de água no Rio Jaú e torneiras de Tabela 1 – Microplásticos por litro em água de captação (CAP)

ID	Mês/Ano	Filamento	Fragmento	Filme	Pellet	Espuma	Subtotal
CAP	set/23	25	10	0	0	0	35
CAP	out/23	22	20	0	7	0	48
CAP	nov/23	27	3	2	3	0	35
Média		24	11	1	3	0	39

Tabela 2 – Microplásticos por litro em água tratada (ETA).

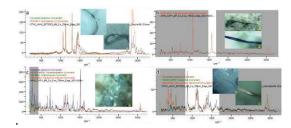
ID	Mês/Ano	Filamento	Fragmento	Filme	Pellet	Espuma	Subtotal
ETA	set/23	20	5	0	0	0	25
ETA	out/23	22	8	0	0	0	30
ETA	nov/23	18	0	0	2	0	20
Média		20	4	1	3	0	25

Tabela 3 – Eficiência (%) da remoção de microplásticos por litro em água tratada (ETA).

4. CONCLUSÕES

O estudo em Jaú, SP, revelou presença de microplásticos na água, com destaque para o papel da ETA na sua redução, embora desafios persistam. Os polímeros mais comuns foram filamentos de Polietileno (PE) e Poliestireno (PS). É urgente melhorar o tratamento de água e políticas de gestão de resíduos. Mais pesquisas são necessárias para entender os impactos na saúde e no ambiente e encontrar soluções eficazes.

5. REFERÊNCIAS


jardim em imóveis abastecidos pela Estação de Tratamento de Água (ETA). Essa escolha permitiu uma avaliação abrangente da presença de microplásticos ao longo do sistema de distribuição de áaua.

3. RESULTADOS E DISCUSSÕES

As tabelas abaixo apresentam uma análise quantitativa da presença de microplásticos por litro de água em duas etapas distintas do processo de abastecimento de água: na captação de água (CAP) e após o tratamento na estação de tratamento de água (ETA), durante os meses de setembro, outubro e novembro de 2023. Esses dados são fundamentais para avaliar a eficácia dos processos de tratamento de água na remoção de microplásticos e para entender a extensão da contaminação por microplásticos em recursos hídricos destinados ao consumo humano.Em seguida, apresentamos a figura 1, onde os fragmentos de plásticos foram submetidos ao Espctro Raman para identificação do tipo de polímero.

ID	Mês/Ano	Filamento	Fragmento	Filme	Pellet	Espuma	Subtotal
EFI	set/23	20	50	0	0	0	29
EFI	out/23	0	58	0	100	0	38
EFI	nov/23	31	100	100	50	0	43
Média		1 <i>7</i>	69	33	50	0	36

Figura 1 — Espectro Raman de: (a fibras de Polietileno (PE); (b) fibra de Polifenileno Sulfeto (PPS); (c) microesferas de Poliestireno (PS); e (d) fibras de celulose.

CANEVAROLO, S. Ciência dos Polímeros—Um Texto Básico Para Tecnólogos e Engenheiros. [s.l: s.n.]..

ARAUJO, C. F. et al. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, v. 142, p. 426–440, 2018.

AGRADECIMENTOS

O projeto agradece Laboratório de Análises Ambientais e Liminológicas da Fatec Jahu e ao Laboratório de Lasers e Aplicações do Instituto de Pesquisas Energéticas e Nucleares do Estado de São Paulo (CLA-IPEN).

22